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Abstract A considerable limitation of NMR spectros-

copy is its inherent low sensitivity. Approximately 90 % of

the measuring time is used by the spin system to return to

its Boltzmann equilibrium after excitation, which is

determined by 1H-T1 in cross-polarized solid-state NMR

experiments. It has been shown that sample doping by

paramagnetic relaxation agents such as Cu2?-EDTA

accelerates this process considerably resulting in enhanced

sensitivity. Here, we extend this concept to Gd3?-com-

plexes. Their effect on 1H-T1 has been assessed on the

membrane protein proteorhodopsin, a 7TM light-driven

proton pump. A comparison between Gd3?-DOTA,

Gd3?-TTAHA, covalently attached Cu2?-EDTA-tags and

Cu2?-EDTA reveals a 3.2-, 2.6-, 2.4- and 2-fold improved

signal-to-noise ratio per unit time due to longitudinal

paramagnetic relaxation enhancement. Furthermore, Gd3?-

DOTA shows a remarkably high relaxivity, which is

77-times higher than that of Cu2?-EDTA. Therefore, an

order of magnitude lower dopant concentration can be used.

In addition, no line-broadening effects or peak shifts have

been observed on proteorhodopsin in the presence of Gd3?-

DOTA. These favourable properties make it very useful for

solid-state NMR experiments on membrane proteins.

Keywords Solid-state NMR � MAS � PRE �
Gd-DOTA

Introduction

Solid-state NMR is a powerful method to gain insight into

structure and functional mechanisms of membrane proteins

or other insoluble macromolecular complexes (Renault

et al. 2010). Unfortunately, NMR in general and solid-state

NMR in particular suffers from low inherent sensitivity.

This is especially true in case of membrane protein appli-

cations due to their limited spin concentration, which

results in long data collection times needed to accumulate a

sufficient signal-to-noise ratio (SNR). Almost 90 % of the

experimental time is required to restore the 1H Boltzmann

equilibrium after each cross-polarization step. The neces-

sary recycle delay equals 4–5-times the 1H longitudinal

relaxation time (1H-T1), which is usually also needed to

limit the probehead duty cycle and to avoid unnecessary

sample heating. One possible route for enhancing the SNR

per unit time is to reduce 1H-T1 by doping the sample with

paramagnetic relaxation agents (Ganapathy et al. 1981). So

far, Cu2?-EDTA has been used successfully for a multitude

of samples facilitating rapid data acquisition with increased

sensitivity. Examples include microcrystalline proteins

(Linser et al. 2007; Wickramasinghe et al. 2009), mem-

brane proteins (Tang et al. 2011; Yamamoto et al. 2010)

and complex biomaterials (Mroue et al. 2012). In case of

membrane application, copper-chelated lipids have been

used and the enhanced SNR per unit time even enabled

detecting unlabelled peptides within bicelles (Yamamoto

et al. 2010, 2011). This work resulted in a general approach

termed paramagnetic relaxation-assisted condensed data

collection (PACC) (Ganapathy et al. 1981; Parthasarathy

et al. 2013; Wickramasinghe et al. 2007, 2008, 2009),

which combines paramagnetic doping with Cu2?-EDTA,

rapid MAS (C40 kHz), low power decoupling and short

recycle delays. It was also demonstrated, that the intrinsic
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paramagnetism of metal binding proteins can be used to

create paramagnetic relaxation enhancement (PRE), while

the observation of pseudo-contact shifts (PCS) provides

additional constraints in the solid-state (Bertini et al. 2010;

Knight et al. 2012).

Although Cu2?-EDTA has been successfully used, a

choice of different paramagnetic dopants is highly desir-

able in order to meet the requirements imposed by diverse

sample conditions (temperature, hydration, buffer system

and pH), by protein-specific constraints (e.g. existing metal

binding sites) or in case of membrane proteins by the lipid

bilayer. Besides Cu2?-EDTA (Ethylenediaminetetraacetic

acid), also nitroxides or lanthanides could be applied.

Amongst the latter, especially Gd3? is of interest due to its

seven unpaired electrons. It does not cause PCS since its

magnetic susceptibility tensor is isotropic, but the size of

the isotropic tensor component and its slow electronic

relaxation rates cause large PRE. PRE effects by Gd3? are

larger than those reported for nitroxides and comparable to

Cu2? and Mn2?(reviewed in (Otting 2010)). Gd3?-com-

plexes have been very popular as MRI contrast agents and

many different chelators are available (Caravan

et al. 1999). Here, TTAHA (N-Tris(2-aminoethyl)amine-

N0,N0,N00,N00, N000,N000-hexitacetic acid) and DOTA

(1,4,7,10-tetraaza-cyclodo-decane-tetraacetic acid) were

chosen due to their high stability and ligand denticity

(Table 1). In the following, PRE effects caused by

Gd3?-DOTA and Gd3?-TTAHA will be compared with the

established dopant Cu2?-EDTA, which will be either added

directly to the protein buffer or attached to cysteine side

chains (Cu2?-EDTA-tag) (Fig. 1). For this study, green

proteorhodopsin (GPR), a pentameric/hexameric, heptahe-

lical, 249 residue light-driven proton pump reconstituted

into lipid bilayers, has been used in order to obtain realistic

data on a large membrane protein [for a recent review see

(Bamann et al. 2013)].

Methods

Expression, purification and reconstitution of green

proteorhodopsin (GPR)

U-15N-GPR and reversely labelled U-[13C,15N]\WHFLY-

GPR were expressed in E. coli and purified as described

before (Mehler et al. 2013). The protein was reconstituted

in DMPC:DMPA (9:1) liposomes at a ratio of 2:1 (w/w).

The pH was adjusted to 7.0 with 50 mM MES or to 9.0

with 50 mM Tris–HCl, unless stated otherwise. The

amount of GPR placed in a 4 mm MAS rotor was between

5 and 10 mg.

Preparation of Cu2?-EDTA

A stock solution of (NH4)2[Cu(EDTA)] was prepared by dis-

solving 1.0 eq. CuSO4 (Aldrich) and H4EDTA (Aldrich)

(1.2 eq.) in H2O. The pH was adjusted to 5–6 with NH4OH. The

complex was incubated at 4 �C over night before lyophilisa-

tion. Before usage the Cu2?-EDTA complex was dissolved in

NMR-buffer pH 9 (4 �C) and added to the sample in the tested

concentrations. The sample was incubated at 4 �C for 10 min

before ultracentrifugation and transferring into the MAS rotor.

Table 1 Summary of dopant properties and their PRE effects on proteorhodopsin

Cu2?-EDTA Cu2?-Tag Gd3?-TTAHA Gd3?-DOTA Diamagnetic

sample

Ligand denticity 6 6 10 8 –

Log Ks 18.9a 18.9a 19.0b 25.3c –

Hydration number q 0 0 2d 1e –

Optimal concentration 50 mM 15-fold 30 mM 2 mM –
1H T1 [s] amide backbone 0.21 ± 0.1 0.14 ± 0.1 0.12 ± 0.1 0.08 ± 0.1 0.83 ± 0.1
1H T1 [s] pSB 0.24 ± 0.01 0.17 ± 0.03 0.14 ± 0.01 0.08 ± 0.03 0.86 ± 0.1

Opt. recycle delay [s] 1.05 0.7 0.6 0.4 4.2

Time saving 4.0 6.0 7.0 10.5 –

Relaxivity [mM-1s-1] 0.08 ± 0.02 0.07 ± 0.02f 0.22 ± 0.03 6.18 ± 0.23 –

a Stary 1963
b Wagner et al. 1997
c Kumar et al. 1994
d Ruloff et al. 1998
e Powell et al. 1996
f Just given for completeness. Since the labels are directly attached to GPR, a comparison with the other relaxivities is not meaningful
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Cysteine side chain labelling of GPR by a Cu2?-EDTA-tag

Site-specific labelling was done as described by Nadaud

et al. (2007) with some modifications specific to GPR. GPR

contains three cysteins (C107, 156, 175), which can be

labelled (Hellmich et al. 2009). The protein was purified as

described above but with the addition of 2 mM

b-mercaptoethanol [b-ME] to all buffers. The Ni-NTA

column was washed with 300 mM NaCl, 50 mM MES,

50 mM imidazole, 0.15 % DDM at pH 6. b-ME was

removed in the last step by buffer exchange. The thiol-

specific disulfide reagent, N-[S-(2-pyridylthio)cys-teami-

nyl]EDTA (EDTA-tag, Toronto Research Chemicals) pre-

loaded with 1.1 mol eq. of Cu2? was added in molar excess

(1–30-fold) as aqueous solution. The sample was incubated

overnight at 4 �C. Excess Cu2?-EDTA-tag was removed

by extensive washing with 300 mM NaCl, 50 mM MES,

50 mM imidazole, 0.15 % DDM at pH 6 on the Ni-NTA

column before elution and reconstitution. Integrity of

labelled samples was verified using optical spectroscopy

(Fig. S3).

Preparation of Gd3?-TTAHA

The Gd-complex was prepared according to published

procedures (Ruloff et al. 1995). For the quality of the

complex it was crucial to wash the Gd3?-oxide-hydrate

(Aldrich) extensively with 0.1 M NaOH and to let the

complex build over night at 4 �C. After lyophilisation the

Gd3?-TTAHA complex was dissolved in NMR-buffer pH

9 (4 �C) and added to the sample in the tested concentra-

tions. The sample was incubated at 4 �C for 10 min before

ultracentrifugation and transferring into the MAS rotor.

Preparation of Gd3?-DOTA

The Gd3?-DOTA complex was bought from BOC Sciences

(CAS no. 72573-82-1). The Gd3?-DOTA powder was

dissolved in NMR-buffer pH 9 (4 �C) and added to the

sample in the tested concentrations. The sample was

incubated at 4 �C for 10 min before ultracentrifugation and

transferring into the MAS rotor.

NMR spectroscopy

All MAS NMR experiments were conducted using a Bru-

ker 4 mm triple-resonance DVT HCN e-free probehead on

a Bruker WB Avance I solid-state NMR spectrometer

operating at a 1H frequency of 600.13 MHz. 1D and 2D

experiments were recorded using a sample spinning rate of

10 kHz with a 20 ms acquisition period unless stated

otherwise. The total duty cycle was kept at 2–4 % of the

experimental time. The temperature was set to 270 K at a

maximum gas flow of 2000 l/h. Temperature equilibration

was achieved by running a series of ‘dummy’ 1D CP-MAS

experiments using the reduced recycle delay before real

data acquisition. 1H-T1 values were determined by 15N-

detected saturation recovery experiments. 1H transitions

were saturated by a train of p/2 pulses followed by a var-

iable saturation recovery delay before a ramped 1H-15N

cross polarization step with a 1 ms contact time (Metz et al.
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Fig. 1 Cu2?-EDTA (a), Cu2?-EDTA-tag bound via a disulfide

bridge to cysteines in GPR (b), Gd3?-TTAHA (c), Gd3?-DOTA

(d), structural model of GPR (Bamann et al. 2013) (e). The three

accessible cysteines C107, C156 and C175 as well as protonated

Schiff base (pSB) and retinal co-factor are highlighted
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1994). High power proton decoupling (100 kHz) using

TPPM (Bennett et al. 1995) was applied during 15N

acquisition (20 ms). The resulting saturation recovery

curves (Fig. 2) can be described by a mono-exponential

function to calculate 1H-T1. To obtain bulk amide 1H-T1,
15N signals of the protein amide backbone were integrated

from 124.5–104.5 ppm (Fig. 3c). The well-separated res-

onance of the protonated Schiff base at 182 ppm enabled to

probe 1H-T1 of protons close to the Schiff base nitrogen in

the hydrophobic core of GPR. 13C-13C through-space cor-

relation spectroscopy was carried out using proton-driven

spin diffusion (PDSD) (Szeverenyi et al. 1982). A series of

1D experiments was applied for temperature equilibration

before recording the 2D spectra. All spectra were recorded

with 1 ms CP contact time, 30 ms mixing time, 1358

complex data points and 15 ms acquisition and in the direct

dimension and 825 data points and 10 ms acquisition in the

indirect dimension. Typical 90� pulse lengths were 3 ls for
1H, 4 ls for 13C and 6 ls for 15N. A recycle delay of 3–4 s,

or shorter where mentioned, was used. Chemical shift

referencing was carried out with respect to DSS through

adamantane (40.49 and 31.47 ppm) and calculated for 15N

through the gyromagnetic ratio. Data processing was per-

formed with Topspin 2.1. Data analysis was done with

Sparky 3.113.

Results

Green proteorhodopsin 1H-T1 relaxation times as a func-

tion of dopant concentration were measured via saturation

recovery experiments through 1H-15N cross polarization

(Fig. 2). Bulk 1H-T1 was obtained by analysing changes

in the integral signal intensity of the full 15N amide

backbone resonance, while more site-specific data were

obtained via the protonated Schiff base signal (see spec-

trum in Fig. 3c). Under the experimental conditions

applied here, a bulk 1H-T1 of 850 ms was found for the

diamagnetic sample. 1H-T1 as a function of dopant con-

centration is plotted in Fig. 3a. A significant reduction is

observed for all three dopants. It is worth noting hat

Cu2?-EDTA-tags attached to the three native cysteines

C107, 156 and 175 in GPR, which are accessible for

chemical labelling (Hellmich et al. 2009), also yield

considerable PRE effects. A further increase of the con-

centration of the Cu2?-EDTA-tag used for the labelling

reaction did not further reduce the 1H-T1 times, showing

that with 15-fold excess the labelling capacity of all three

cysteines was reached (Table S2).

Our data reveal that very different concentrations are

needed to achieve the comparable PRE effects, which

becomes even more evident when comparing reciprocal plots

(Fig. 3b): R1 increases linearly with dopant concentration, but

the relaxivity differs greatly. It is highest for Gd3?-DOTA

(6.18 mM-1s-1), followed by Gd3?-TTAHA

(0.22 mM-1s-1) and Cu2?-EDTA (0.08 mM-1s-1). The

linear dependence of R1 shows that no paramagnetic

quenching due to transversal PRE occurs within the plotted

dopant concentration range, but signal loss for Cu2?-EDTA

has been observed above 100 mM (Fig. 2a3). Our data show

that the maximal 1H-T1 reduction, which can be achieved for

this typical membrane protein, is approximately tenfold for

2 mM Gd3?-DOTA (80 ± 10 ms), sevenfold for 30 mM

Gd3?-TTAHA (120 ± 10 ms), sixfold for optimal cysteine

labelling with Cu2?-EDTA-tags and fourfold for 50 mM

Cu2?-EDTA (210 ± 10 ms). The pH dependence of all four

dopants at their optimal concentrations was tested at pH 7 and

9, but no differences were observed (Table S1). The isolated

signal of the protonated Schiff base (pSB) (Fig. 3c) also

allowed doping effects within the hydrophobic core of GPR to

be analysed (Fig. 2). These data follow the same trend as

observed for the averaged amide 1H-T1 (Table 1) and show

that the doping induced PRE extends uniformly into the centre

of GPR.

Our data show that Gd3?-DOTA is a highly efficient

dopant. Therefore, the recycle delay time can be reduced

significantly resulting in higher sensitivity as demon-

strated for the optimal dopant concentration (Fig. 3c).

For Gd3?-DOTA, Gd3?-TTAHA, Cu2?-EDTA-tag and

Cu2?-EDTA, a 3.2-, 2.6-, 2.4-, and 2-fold improvement

in SNR per unit time was obtained resulting in approx-

imately 10-, 7-, 6- and 4-fold faster data acquisitions,

respectively.

The effect of doping on chemical shifts and spectral

resolution and its applicability to multidimensional solid-

state NMR was analysed by comparing 13C-13C PDSD

spectra of 13C-labelled GPR with and without doping. The

result for GPR doped with 2 mM Gd3?-DOTA is shown in

Fig. 4. The spectrum was recorded ten times faster, in less

than 12 h instead of approximately 4 days on a non-doped

sample. Neither significant peak shifts nor linebroadenings

were detected. Similar results have been found for the other

three dopants as shown in Figs. S1 and S2. Only in case of

Cu2?-EDTA-tags covalently attached to GPR, changes in

some residues (e.g. D97, A116, A168) have been observed

(Figs. 4c, S2).

Fig. 2 Saturation recovery curves for four different dopants and

dopant concentrations. Normalized time traces are approximated with

a mono-exponential function yielding 1H-T1. Cu2?-EDTA: amide

protons (a1), pSB (a2). The signal of the undoped sample (black) is

significantly reduced after addition of 100 mM (red) and 150 mM

(green) of Cu2?-EDTA (a3). Cu2?-EDTA-tag: Amide 1H-T1 times for

five different samples incubated with 1-, 5-, 10-, 15- and 30-fold

excess of the Cu2?-EDTA-tag (b). Gd3?-TTAHA: amide protons (c1),

pSB (c2). Gd3?-DOTA: amide protons (d1), pSB (d2). In all cases, the

observed relaxation enhancement detected for the protons close to the

pSB was similar to the average amide proton PRE (Table 1)

b
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Discussion

NMR on paramagnetic systems in solution has been suc-

cessfully established to yield additional structure con-

straints through PCS (Bertini et al. 2008) or PRE (Clore

and Iwahara 2009). This concept has been extended into

solid-state NMR, but it was also found that PRE could be

used as well to accelerate data acquisition hence to

improve SNR per unit time. For the purpose of condensed

data acquisition in solid-state NMR on membrane proteins,

the ideal doping agent should cause large 1H-T1 PREs but

no PCSs nor line broadening, it should be stable, chemi-

cally inert and work at possibly low concentrations. Our

data on GPR show that all four tested dopants fulfil these

criteria to a certain extent. They yield a considerable PRE,

which can be used to reduce the required NMR time while

maintaining spectral resolution, once the optimal concen-

tration has been found. Our data also show that the 1H-T1

PRE observed for the bulk amide protons is in all cases

rather similar to the more site-specific values obtained for

the protonated Schiff base in the core of the protein. This

observation, together with the PDSD data (Figs. 4, S1),

indicates uniform PRE within the protein, which is in line

with current models for hydrated samples: the dopant

relaxes protons on the protein surface, which will also

affect other protons within the protein via spin diffusion

mechanisms (Wickramasinghe et al. 2009). However, some

important differences have been observed as well: In terms

of SNR per unit time Gd3?-DOTA and Gd3?-TTAHA

perform 1.6- and 1.3-times better than Cu2?-EDTA

(Figs. 2, 3). Especially for Gd3?-DOTA, the differences

are more pronounced when comparing relaxivity, which is

28 and 77 times higher compared to Gd3?-TTAHA and

Cu2?-EDTA, respectively.

Cu2?-EDTA was included in this study for comparison

as it has been used extensively before on crystalline sys-

tems (Linser et al. 2007; Wickramasinghe et al. 2007),

membrane proteins (Tang et al. 2011) and, by using Cu(II)

with lipid chelators, on membrane-associated peptides

(Yamamoto et al. 2010). Our data confirm its general

usability, although relaxivity is lowest in our case. The fact

that signal loss probably due to transversal PRE has been

observed for higher Cu2?-EDTA concentrations (Fig. 2a3)

emphasizes the need to have a choice of dopants available

in order to address different experimental requirements.

Cu2?-induced T2-PRE effects have also been reported

before (Nadaud et al. 2009; Su et al. 2012) and attaching

paramagnetic complexes directly to the protein (or lipid)

has been demonstrated to obtain long-range distance
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constraints (Nadaud et al. 2007, 2010). Here, the use of

Cu2?-EDTA-tags to shorten 1H-T1 is demonstrated. One

limitation compared to the other three dopants is the

required chemical modification of the target protein as well

as the occurrence of local chemical shift changes probably

due to steric or small PCS effects (Fig. 4, S2).

Both Gd3? and Cu2? have an isotropic or nearly iso-

tropic magnetic susceptibility tensor and both show rela-

tively long electron relaxation times (ns) (Benmelouka

et al. 2007; Pintacuda et al. 2004). However, differences in

potency can be expected as Cu2? contains one but Gd3?

seven unpaired electrons, which made the latter the pre-

ferred ion for use in MRI contrast agents. Surprisingly,

both of the Gd3?-complexes used here show large differ-

ences in terms of relaxivity, which might be explained

based on their chemical properties. In aqueous solution,

paramagnetic relaxation of water contains contributions

from directly coordinated water molecules (‘inner sphere

mechanism’) and from those residing in a second coordi-

nation sphere (‘second sphere mechanism’) in exchange

with bulk water. Furthermore, relaxation contributions

from long-range dipolar interactions between the para-

magnetic compound and nuclear spins depend on transla-

tional diffusion of ion and solvent and their closest distance

(‘outer sphere mechanism’) (reviewed in (Caravan et al.

1999)). The contribution of the inner sphere mechanism to

relaxivity is proportional to the number of directly bound

water molecules (q), which is q = 0 for Cu2?-EDTA,

q = 1 for Gd3?-DOTA and q = 2 for Gd3?-TTAHA. In

that respect, the latter should perform best, which has been

indeed observed in aqueous solution (Ruloff et al. 1998).

Obviously, a large number of parameters besides q are

needed to describe all three mechanisms in order to explain

or predict a trend in relaxivity. These include e.g. the

rotational correlation time, water residence time, electronic

relaxation time, translational diffusion and the distance

from nuclei to the paramagnetic ion. It can be assumed that

both Gd3? complexes differ in rotational and translational

diffusion due to their differences in charge and size but the

other parameters are not known and the model only par-

tially applies to the experimental situation described here

(densely packed proteoliposomes, reduced amount of bulk

water), since PRE might occur via protons in water mol-

ecules or directly via protons on the protein surface. Due to

its size, Gd3?-TTAHA might not get close enough to the

protein’s surface and so higher concentrations are neces-

sary to reach a PRE comparable to Gd3?-DOTA. The

surprisingly high longitudinal relaxivity of Gd3?-DOTA is

therefore probably caused by a well-balanced optimum

between hydration number, size, rotational and translation

correlation times as well as electron relaxation properties.

Gd3? not only causes longitudinal but also transversal

PRE, but no significant linebroadening has been observed

within the concentration range used here. According to the

Salomon relaxation mechanism (Solomon 1955), both

nuclear R1 and R2 due to dipolar couplings to unpaired

electrons are proportional to c2
ec

2
n=r6

� �
. Since we analyse

R1-PRE of protons but detect 13C or 15N, R2-PRE effects

will be much less pronounced due to their lower gyro-

magnetic ratio. Furthermore, spin diffusion for 13C or 15N
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Fig. 4 Fast data acquisition by

Gd3?-DOTA doping.

a Superposition of 13C-13C

PDSD spectra of GPR non-

doped (black) and doped with

2 mM Gd3?-DOTA (red). The

recycle delay was 4.2 s for the

diamagnetic control sample and

0.4 s for the paramagnetic

sample. The amount of sample

and number of scans was the

same for both spectra. b Cross

sections along x2 for CA-CB

crosspeaks show no doping

induced linebroadening or

chemical shift changes. Spectra

for Cu2?-EDTA, Cu2?-EDTA-

tag and Gd3?-TTAHA are

shown in Figs. S1 and S2. Only

in case of covalently attached

Cu2?-EDTA, some chemical

shift changes have been

observed as shown here for

A116 CA-CB crosspeak (c)
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is much slower than for protons, which also limits transfer

from the surface into the interior of the protein.

Conclusions

Although lanthanide complexes were used before for

generating PCS in solid-state and PRE in liquid-and solid-

state NMR as structure constraints (Kervern et al. 2006;

Yagi et al. 2010; Grobner et al. 1999), and Gd3?-com-

plexes were suggested as relaxation dopants in solid-state

NMR (Mroue et al. 2012), this work is the first study

actually demonstrating the suitability of Gd3? for reducing

measurement time in solid-state NMR spectroscopy. The

very high relaxivity of Gd3?-DOTA as shown here for

proteorhodopsin, makes this dopant highly attractive for

condensed data collection in membrane protein studies.

Under the experimental conditions used here, SNR

improvement per unit time by adding Gd3?-DOTA is 1.6-

times better than for Cu2?-EDTA, while a 25-times lower

concentration is needed. This lower dopant concentration

helps reducing sample interference or heating effects.

Furthermore, no linebroadening has been observed and

PRE occurs within the whole protein. Shorten measure-

ment time by paramagnetic doping is still the simplest and

most universally applicable approach in solid-state NMR.

Alternative methods based on band-selective excitation

come at the expense of reduced data sets (Lopez et al.

2009) and dynamic nuclear polarization, the most powerful

technique in terms of net signal enhancement, requires

experiments at very low temperatures [for a review see

Maly et al. (2008)]. One potentially damaging result of

faster sampling is increased sample heating due to a higher

probehead duty cycle. Possible solutions include para-

magnetic doping in combination with fast MAS (C40 kHz)

(Wickramasinghe et al. 2007, 2008, 2009) or sample deu-

teration (Linser et al. 2007) with low power decoupling.

Here, sample heating was avoided by using a MAS pro-

behead with reduced E-field (Stringer et al. 2005), which

does allow using protonated samples, high power decou-

pling, moderate sample spinning rates and MAS rotors of

conventional size. It has been shown for multidimensional

experiments, that even faster data acquisitions are possible

if non-uniform sampling is used together with paramag-

netic doping (Sun et al. 2012). Doping membrane protein

samples with Gd3?-DOTA will not only be beneficial to

gain a better SNR per time unit but faster data acquisition

is also needed for time-resolved solid-state NMR, which

will allow to obtain kinetic data of functional processes

within membrane proteins.
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